An extended Vlasov–Fokker–Planck approach for kinetic simulations of laser plasmas

Author:

Shaffer N. R.1ORCID,Sherlock M.2ORCID,Maximov A. V.1ORCID,Goncharov V. N.1ORCID

Affiliation:

1. Laboratory for Laser Energetics, University of Rochester 1 , Rochester, New York 14623, USA

2. Lawrence Livermore National Laboratory 2 , P.O. Box 808, Livermore, California 94550, USA

Abstract

Vlasov–Fokker–Planck simulation codes occupy an important niche in modeling laser-produced plasmas, since they are well suited to studying the effect of collisions on electron kinetic phenomena, especially energy transport. One of the most important elements of energy transport is the absorption of laser light by the plasma; however, simulating this in detail requires resolving oscillations of the laser light, whose characteristic timescale is orders of magnitude shorter than the simulation time needed to study transport physics. For this reason, most Vlasov–Fokker–Planck codes used to study electron transport in laser plasmas rely on simplified models of the laser–plasma coupling. Their underlying assumptions nominally preclude their use for modeling laser light having short-scale structure in space or time, such as broadband lasers. In this work, we derive a more general computational framework suitable for arbitrarily structured laser fields. Our approach is based on an extended set of Vlasov–Fokker–Planck equations that separately solve for the low- and high-frequency plasma response. We implement these extended Vlasov–Fokker–Planck equations in the spherical harmonic code K2 and demonstrate the performance of the method on several laser absorption test problems, with particular attention to the judicious selection of time steps, time integrators, and spherical harmonic truncation, according to the intensity and spectrum of the laser light under consideration. Comparison with the widely used Langdon absorption operator shows the Langdon operator performs remarkably well for predicting laser heating in the simple cases considered here, even in situations that would seem to violate its underlying assumptions.

Funder

Advanced Research Projects Agency - Energy

National Nuclear Security Administration

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The fastVFP code for solution of the Vlasov–Fokker–Planck equation;Plasma Physics and Controlled Fusion;2024-02-07

2. Thermal conductivity of a laser plasma;Physical Review E;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3