Circuit-level design principles for transmission-mode microwave impedance microscopy

Author:

Shan Jun-Yi12ORCID,Morrison Nathaniel1ORCID,Ma Eric Y.12ORCID

Affiliation:

1. Department of Physics, University of California 1 , Berkeley, Berkeley, California 94720, USA

2. Lawrence Berkeley National Laboratory 2 , Berkeley, California 94720, USA

Abstract

A recently developed technique of transmission-mode microwave impedance microscopy (T-MIM) has greatly extended the capabilities of standard reflection-mode MIM to novel applications, such as the in operando study of nanoscale electro-acoustic devices. As is common for new techniques, systematic design principles for boosting sensitivity and balancing bandwidth are lacking. Here, we show numerically and analytically that the T-MIM signal is proportional to the reflection-mode voltage enhancement factor η of the circuit, as long as the output impedance of the local voltage source is properly treated. We show that this proportionality holds in the currently achievable “weak sampling” regime and beyond, for which we demonstrate a realistic path with commercially available superconducting components and critically coupled impedance matching networks. We demonstrate that for these next-generation designs, the sensitivity is generally maximized at a slightly different frequency from the unloaded S11 resonance, which can be explained by the maximum power transfer theorem.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3