Affiliation:
1. Department of Civil, Chemical and Environmental Engineering, University of Genoa 1 , Genova 16145, Italy
2. Department of Civil and Building Engineering, and Architecture, Università Politecnica delle Marche 2 , Ancona 60131, Italy
Abstract
The steady streaming generated by nonlinear effects at the bottom of a propagating surface wave is determined when the bottom is characterized by a roughness, the size of which scales with the boundary layer thickness. Therefore, the cornerstone contribution by Longuet-Higgins, who considered a smooth bottom, is extended to sea waves and sandy bottoms characterized by a grain size that ranges from fine silt to fine gravel. For values of the grain size d* up to 0.05δ*, δ* being the thickness of the viscous bottom boundary layer, the velocity profile is practically coincident with that predicted by Longuet-Higgins. If the grain size is further increased, the steady velocity component becomes larger and reaches a maximum value that is approximately 70% larger than that predicted by Longuet-Higgins. The maximum of the steady velocity component is attained for d*=0.6δ*. A further increase in d* leads to a decrease in the steady velocity component that, however, keeps always larger than that predicted for a smooth bottom. As the roughness size increases up to the values typical of medium sand, the steady velocity component increases. Then, a further increase in the roughness size leads to a decrease in the steady streaming even though, in the range of the roughness size presently investigated, the steady velocity component is always larger than that predicted for a smooth bottom.
Funder
Ministero dell'Istruzione, dell'Università e della Ricerca
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献