Time-bin entanglement in the deterministic generation of linear photonic cluster states

Author:

Bauch David12ORCID,Köcher Nikolas12ORCID,Heinisch Nils12ORCID,Schumacher Stefan123ORCID

Affiliation:

1. Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University 1 , Warburger Strasse 100, 33098 Paderborn, Germany

2. Institute for Photonic Quantum Systems (PhoQS), Paderborn University 2 , 33098 Paderborn, Germany

3. Wyant College of Optical Sciences, University of Arizona 3 , Tucson, Arizona 85721, USA

Abstract

We theoretically investigate strategies for the deterministic creation of trains of time-bin entangled photons using an individual quantum emitter described by a Λ-type electronic system. We explicitly demonstrate the theoretical generation of linear cluster states with substantial numbers of entangled photonic qubits in full microscopic numerical simulations. The underlying scheme is based on the manipulation of ground state coherences through precise optical driving. One important finding is that the most easily accessible quality metrics, the achievable rotation fidelities, fall short in assessing the actual quantum correlations of the emitted photons in the face of losses. To address this, we explicitly calculate stabilizer generator expectation values as a superior gauge for the quantum properties of the generated many-photon state. With widespread applicability in other emitter and excitation–emission schemes also, our work lays the conceptual foundations for an in-depth practical analysis of time-bin entanglement based on full numerical simulations with predictive capabilities for realistic systems and setups, including losses and imperfections. The specific results shown in the present work illustrate that with controlled minimization of losses and realistic system parameters for quantum-dot type systems, useful linear cluster states of significant lengths can be generated in the calculations, discussing the possibility of scalability for quantum information processing endeavors.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3