Needle in a haystack: Efficiently finding atomically defined quantum dots for electrostatic force microscopy

Author:

Bustamante José12ORCID,Miyahara Yoichi134ORCID,Fairgrieve-Park Logan1,Spruce Kieran56ORCID,See Patrick7ORCID,Curson Neil568ORCID,Stock Taylor J. Z.568ORCID,Grutter Peter1ORCID

Affiliation:

1. Department of Physics, McGill University 1 , Montréal, Québec H3A 2T8, Canada

2. Departamento de Física, Universidad San Francisco de Quito 2 , Quito 170901, Ecuador

3. Department of Physics, Texas State University 3 , San Marcos, Texas 78666, USA

4. Materials Science, Engineering and Commercialization Program (MSEC), Texas State University 4 , San Marcos, Texas 78666, USA

5. Department of Electronic and Electrical Engineering 5 , , London WC1E 7JE, United Kingdom

6. University College London 5 , , London WC1E 7JE, United Kingdom

7. National Physical Laboratory 6 , Teddington TW11 0LW, United Kingdom

8. London Centre for Nanotechnology, University College London 7 , London WC1H 0AH, United Kingdom

Abstract

The ongoing development of single electron, nano-, and atomic scale semiconductor devices would greatly benefit from a characterization tool capable of detecting single electron charging events with high spatial resolution at low temperatures. In this work, we introduce a novel Atomic Force Microscope (AFM) instrument capable of measuring critical device dimensions, surface roughness, electrical surface potential, and ultimately the energy levels of quantum dots and single electron transistors in ultra miniaturized semiconductor devices. The characterization of nanofabricated devices with this type of instrument presents a challenge: finding the device. We, therefore, also present a process to efficiently find a nanometer sized quantum dot buried in a 10 × 10 mm2 silicon sample using a combination of optical positioning, capacitive sensors, and AFM topography in a vacuum.

Funder

National Research Council

Fonds de Recherche Du Québec – Nature et Technologies

Institut Interdisciplinaire d’Information Quantique

Engineering and Physical Sciences Research Council

Secretaria de Educación Superior, Ciencia, Tecnología e Innovación

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3