Mixing dynamics in the synthesis of nanoparticle-stabilized water-in-water emulsion: Impact on size and stability

Author:

Shekhar Chandra1ORCID,Pawak Vishal Singh1ORCID,Mehandia Vishwajeet1ORCID,Ramamirtham Sashikumar2ORCID,Kullappan Monicka3,Sabapathy Manigandan1ORCID

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Ropar 1 , Rupnagar 140001, India

2. Edinburgh Complex Fluids Partnership, The University of Edinburgh 2 , Edinburgh EH9 3FD, United Kingdom

3. GE Research 3 , Niskayuna, New York 12309, USA

Abstract

This communication presents a comprehensive investigation into the impact of mixing on the synthesis of water-in-water Pickering emulsions. The approach employs commercial-grade oppositely charged nanoparticles within two distinct fluid phases, facilitating self-assembly and the formation of aggregates with variable sizes and compositions. Enhanced interfacial area, achieved through aggregate adsorption at the interface, elevates the Gibbs detachment energy of particles between the two aqueous phases, leading to stable emulsion formation. We further explore the effect of various mixing devices, including high-pressure and sonic wave mixing. Our findings reveal that mixing within the aqueous phase critically influences emulsion size, with sonicator-assisted mixing producing smaller droplets than homogenizer mixing. Both devices yield poly-dispersed droplet size distributions. Interestingly, the droplet size correlates well with the Hinze scale (hd), and the Kolmogorov length scale (ld) exhibits good correspondence within a specific operating range. The proposed method introduces a streamlined, one-step synthesis process for easy preparation, demonstrating excellent stability for a minimum of 30 days. This study pioneers the investigation of mixing effects within an aqueous two-phase system utilizing a Pickering emulsion template.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3