Nanolamellar phase transition in an additively manufactured eutectic high-entropy alloy under high pressures

Author:

Pope Andrew D.1ORCID,Iwan Seth1ORCID,Clay Matthew P.1ORCID,Vohra Yogesh K.1ORCID,Katagiri Kento23ORCID,Dresselhaus-Marais Leora23ORCID,Ren Jie4ORCID,Chen Wen4ORCID

Affiliation:

1. Department of Physics, University of Alabama at Birmingham 1 , Birmingham, Alabama 35294, USA

2. Department of Materials Science and Engineering, Stanford University 2 , Stanford, California 94305, USA and , Menlo Park, California 94025, USA

3. SLAC National Accelerator Laboratory 2 , Stanford, California 94305, USA and , Menlo Park, California 94025, USA

4. Department of Mechanical and Industrial Engineering, University of Massachusetts 3 , Amherst, Massachusetts 01003-2210, USA

Abstract

Much is unknown about how phase transitions link to micro-/nano-structures in high-entropy systems, especially under extreme pressure and temperature conditions. This work studies the evolution of dual-phase nanolamellar eutectic high-entropy alloy phases of AlCoCrFeNi2.1 generated by laser powder-bed fusion (L-PBF) for pressures up to 42 GPa. We compare quasi-hydrostatic high pressure synchrotron x-ray diffraction studies on L-PBF printed cylindrical samples up to 5.5 GPa (large-volume Paris–Edinburgh cell) to those carried out on an L-PBF printed foil in a diamond anvil cell where the pressure reached 42 GPa. Our results show that the initially alternating face-centered cubic (FCC) and body-centered cubic (BCC) nanolamellar structure of AlCoCrFeNi2.1 transformed into single-phase FCC nanolamellae under high pressure with BCC–FCC phase transformation completion at 21 ± 3 GPa. Our results indicate a diffusionless BCC–FCC transformation in this additively manufactured far-from-equilibrium microstructure and demonstrate that the FCC phase is stable up to very high pressures. The measured equation of state for the FCC phase of AlCoCrFeNi2.1 is presented up to 42 GPa and shows excellent agreement between the data obtained in large-volume press and diamond anvil cell experiments.

Funder

U.S. Department of Energy

National Aeronautics and Space Administration

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3