Identification of two-phase flow patterns based on capacitance data of electrical capacitance tomography with semi-supervised generative adversarial network

Author:

Gao Heming1ORCID,Ku Shuaichao1ORCID,Jian Xiaohu1ORCID

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology , No. 5 Jinhuanan Road, Xi’an 710048, People’s Republic of China

Abstract

Currently, the flow pattern identification algorithms based on ECT (electrical capacitance tomography) technology have low identification accuracy for complex flow patterns and require a large amount of label data for learning. A novel flow pattern identification method based on a semi-supervised generative adversarial network (SGAN) with capacitance data of ECT is proposed. First, the principles of the ECT technique and general GAN are briefly described, and the model parameters, loss function, and training process of the SGAN are explained in detail. Second, a capacitance data sample set of 11 400 random flow patterns is constructed by co-simulations of COMSOL and MATLAB, and then, the SGAN and BP (back propagation) and SVM (support vector machine) network models are trained and validated by the training set. Finally, static experiments are conducted on the self-developed ECT system, and the identification results of different algorithms are compared and analyzed by modifying the label sample size of the training set. The experimental results show that SGAN maintains a higher average identification accuracy under the training condition where the number of label samples of SGAN is ten times smaller than that of the other two algorithms.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3