Undulations in tubular origami tessellations: A connection to area-preserving maps

Author:

Imada Rinki1ORCID,Tachi Tomohiro1ORCID

Affiliation:

1. Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo , Meguro-ku, Tokyo 153-8902, Japan

Abstract

Origami tessellations, whose crease pattern has translational symmetries, have attracted significant attention in designing the mechanical properties of objects. Previous origami-based engineering applications have been designed based on the “uniform-folding” of origami tessellations, where the folding of each unit cell is identical. Although “nonuniform-folding” allows for nonlinear phenomena that are impossible through uniform-folding, there is no universal model for nonuniform-folding, and the underlying mathematics for some observed phenomena remains unclear. Wavy folded states that can be achieved through nonuniform-folding of the tubular origami tessellation called a waterbomb tube are an example. Recently, the authors formulated the kinematic coupled motion of unit cells within a waterbomb tube as the discrete dynamical system and identified a correspondence between its quasiperiodic solutions and wavy folded states. Here, we show that the wavy folded state is a universal phenomenon that can occur in the family of rotationally symmetric tubular origami tessellations. We represent their dynamical system as the composition of the two 2D mappings: taking the intersection of three spheres and crease pattern transformation. We show the universality of the wavy folded state through numerical calculations of phase diagrams and a geometric proof of the system’s conservativeness. Additionally, we present a non-conservative tubular origami tessellation, whose crease pattern includes scaling. The result demonstrates the potential of the dynamical system model as a universal model for nonuniform-folding or a tool for designing metamaterials.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective isometries of periodic shells;Journal of the Mechanics and Physics of Solids;2024-04

2. Frustration propagation in tubular foldable mechanisms;Frontiers in Physics;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3