Radiative cooling effects on reverse shocks formed by magnetized supersonic plasma flows

Author:

Merlini S.1ORCID,Hare J. D.12ORCID,Burdiak G. C.1,Halliday J. W. D.1ORCID,Ciardi A.3ORCID,Chittenden J. P.1ORCID,Clayson T.1,Crilly A. J.1ORCID,Eardley S. J.1,Marrow K. E.1ORCID,Russell D. R.1ORCID,Smith R. A.1ORCID,Stuart N.1ORCID,Suttle L. G.1ORCID,Tubman E. R.1ORCID,Valenzuela-Villaseca V.1ORCID,Varnish T. W. O.1ORCID,Lebedev S. V.1ORCID

Affiliation:

1. Blackett Laboratory, Imperial College 1 , London SW7 2AZ, United Kingdom

2. Plasma Science and Fusion Center, Massachusetts Institute of Technology 2 , Cambridge, Massachusetts 02139, USA

3. Sorbonne Université, Observatoire de Paris, PSL Research University, LERMA 3 , CNRS UMR 8112 75005 Paris, France

Abstract

We study the structure of reverse shocks formed by the collision of supersonic, magnetized plasma flows driven by an inverse (or exploding) wire array with a planar conducting obstacle. We observe that the structure of these reverse shocks varies dramatically with wire material, despite the similar upstream flow velocities and mass densities. For aluminum wire arrays, the shock is sharp and well-defined, consistent with magneto-hydrodynamic theory. In contrast, we do not observe a well-defined shock using tungsten wires, and instead we see a broad region dominated by density fluctuations on a wide range of spatial scales. We diagnose these two very different interactions using interferometry, Thomson scattering, shadowgraphy, and a newly developed imaging refractometer that is sensitive to small deflections of the probing laser corresponding to small-scale density perturbations. We conclude that the differences in shock structure are most likely due to radiative cooling instabilities, which create small-scale density perturbations elongated along magnetic field lines in the tungsten plasma. These instabilities grow more slowly and are smoothed by thermal conduction in the aluminum plasma.

Funder

Engineering and Physical Sciences Research Council

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3