Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning

Author:

Milardovich Diego1ORCID,Wilhelmer Christoph12ORCID,Waldhoer Dominic1ORCID,Cvitkovich Lukas1ORCID,Sivaraman Ganesh3ORCID,Grasser Tibor1ORCID

Affiliation:

1. Institute for Microelectronics, Technische Universität Wien 1 , Gußhausstraße 27–29, 1040 Vienna, Austria

2. Christian Doppler Laboratory for Single-Defect Spectroscopy in Semiconductor Devices at the Institute for Microelectronics 2 , TU Wien, 1040 Vienna, Austria

3. Data Science and Learning Division, Argonne National Laboratory 3 , Lemont, Illinois 60439, USA

Abstract

Silicon nitride (Si3N4) is an extensively used material in the automotive, aerospace, and semiconductor industries. However, its widespread use is in contrast to the scarce availability of reliable interatomic potentials that can be employed to study various aspects of this material on an atomistic scale, particularly its amorphous phase. In this work, we developed a machine learning interatomic potential, using an efficient active learning technique, combined with the Gaussian approximation potential (GAP) method. Our strategy is based on using an inexpensive empirical potential to generate an initial dataset of atomic configurations, for which energies and forces were recalculated with density functional theory (DFT); thereafter, a GAP was trained on these data and an iterative re-training algorithm was used to improve it by learning on-the-fly. When compared to DFT, our potential yielded a mean absolute error of 8 meV/atom in energy calculations for a variety of liquid and amorphous structures and a speed-up of molecular dynamics simulations by 3–4 orders of magnitude, while achieving a first-rate agreement with experimental results. Our potential is publicly available in an open-access repository.

Funder

Horizon 2020 Framework Program

Austrian Federal Ministry for Digital and Economic Affairs

National Foundation for Research, Technology and Development

Christian Doppler Research Association

Exascale Computing Project

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3