Magnetization switching of a nearly compensated ferrimagnet by enhanced spin-orbit torque

Author:

Zhang Xu12ORCID,Wang Xiaolu13,Jiang Qisheng13,He Wenqing2,Yang Yongqiang1ORCID,Gong Qianxun14,Guo Tengyu1,Chen Peng1,Zhang Jing1ORCID,Yu Guoqiang12ORCID,Han Xiufeng12ORCID,Wang Kang L.5,Wang Yue3ORCID,Cui Baoshan126,Wu Hao125ORCID

Affiliation:

1. Songshan Lake Materials Laboratory 1 , Dongguan, Guangdong 523808, China

2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences 2 , Beijing 100190, China

3. School of Physical Science and Technology, Inner Mongolia University 3 , Hohhot 010021, China

4. College of Physics, Sichuan University 4 , Chengdu 610064, Sichuan, China

5. Department of Electrical and Computer Engineering, University of California 5 , Los Angeles, California 90095, USA

6. Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University 6 , Lanzhou 730000, China

Abstract

Spin–orbit torques (SOTs) provide an efficient way to electrically manipulate the magnetic order in spintronic devices. Compared with conventional ferromagnetic materials, ferrimagnetic materials have the advantages of antiferromagnetically coupled sublattices and induced ultrafast spin dynamics. In this paper, we study the current-induced magnetization switching in the ferrimagnetic Ta/GdFeCo/MgO system. Robust SOT-induced magnetization switching can be achieved at the magnetic compensation temperature point of around 70 K, where the magnetization is nearly zero and the coercivity can reach almost 3 T. The temperature dependence of the SOT efficiency is quantified by the second harmonic method, and the enhanced SOT efficiency near the magnetic compensation temperature is attributed to the negative exchange coupling between the two sublattices of CoFe and Gd. This work demonstrates the SOT switching of the nearly compensated ferrimagnet, with great potential for future magnetic interaction-free and ultrafast ferrimagnetic applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Start-up Funding From Songshan Lake Materials Laboratory

Guangdong Basic and Applied Basic Research Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3