Target erosion process during broad ion beam sputtering using 3D modeling of ion trajectories

Author:

Sakiew Wjatscheslaw1ORCID,Klocke Eileen1,Ristau Detlev234

Affiliation:

1. Cutting Edge Coatings GmbH, Hollerithallee 18, 30419 Hannover, Germany

2. Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany

3. Leibniz University Hannover, Institute of Quantum Optics, Callinstraße 36, 30167 Hannover, Germany

4. Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), Leibniz University Hannover, Hannover, Germany

Abstract

Understanding the distribution of particles sputtered from a target requires an appreciation of how ions impinge on the target. In pursuit of this goal, a fully three-dimensional model of the ion trajectories in a broad ion beam, assuming full space charge compensation, Gaussian emission characteristics of the beamlets, and beamlet deflection, was constructed. The modeled ion trajectories were used to simulate target erosion, enabling a comparison between the modeled erosion and the experimental erosion. The focus was on Ar and Xe ion species at ion energies in the range of 1.4–1.9 keV and on target materials, Si, Ta, and SiO2. Conclusions were drawn on the erosion process, the potential radial inhomogeneity of the plasma in the discharge chamber of the ion source, and on the opening angle of the emission characteristics of the beamlets. For the investigated process and an applied target tilt angle of 55°, the model verified that material-specific and angle-dependent ion–solid interaction mechanisms at the atomic level played only a minor role in the target’s macroscopic surface modification in the context of the qualitative distribution of the erosion profile. In contrast, the applied sputtering geometry played a significant role.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3