The impact of accelerating diode resonances on L-band high-power long-pulse relativistic backward wave oscillator operation

Author:

Zhou Ning1ORCID,Zhang Xiaoping1,Dang Fangchao1ORCID,Ge Xingjun1ORCID,Zhang Peng1ORCID,Deng Rujin1ORCID

Affiliation:

1. College of Advanced Interdisciplinary Studies, National University of Defense Technology , Changsha 410073, China

Abstract

An L-band high-power relativistic backward wave oscillator is designed. In the simulation, microwaves centered at 1.6 GHz are generated, with the power of 3.6 GW and the efficiency of 40%. In the preliminary experiment, the pulse duration of the device was only 45 ns, presenting a pulse-shortening phenomenon. Through the 3D particle-in-cell simulation analysis, it was found that the accelerating diode resonances significantly impact the operation of the L-band high power relativistic backward wave oscillator, and the resonance of a TE11 mode in the accelerating diode played the primary role in the pulse shortening. Moreover, we found that choosing the appropriate distance between the cathode baffle and the end of the annular cathode is beneficial to effectively suppress the starting oscillation of the parasitic TE11 mode. In the improved experiment, we changed the distance between the cathode baffle and the end of the annular cathode from previous 5.4 to 4.6 cm. Eventually, when the diode voltage is 650 kV and the diode current is 14 kA, microwaves centered at 1.58 GHz are generated with the power of 3.3 GW, the efficiency of 36%, and the pulse duration above 104 ns.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3