Long-ionic-gated graphene synaptic transistor with enhanced memory, learning function and humidity perception

Author:

He X.12ORCID,Xu M.1ORCID,Shi Q.1,Wang K.1ORCID,Cao B.1,Rao L.1,Xin X.13

Affiliation:

1. School of Electronic Engineering and Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications 1 , Haidian, Beijing 100876, People's Republic of China

2. Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors Chinese Academy of Sciences 2 , P.O. Box 912, Beijing 100083, People's Republic of China

3. School of Information and Electronics, Beijing Institute of Technology 3 , Haidian, Beijing 100081, People's Republic of China

Abstract

With the development of neuromorphic electronics, much effort has been devoted to expand perception, memory, and computing integration capabilities. In this paper, an ionic-based graphene synaptic transistor with long-gate structure has been investigated to mimic memory, learning function and perceive humidity. By harnessing the tunable in-plane-field transport of charge carriers in graphene and ions motion in ion-gel, this transistor mimics various synaptic functionalities, including inhibitory postsynaptic current, excitatory postsynaptic current, paired-pulse facilitation, long-term depression, and long-term potentiation. Under short pules stimuli, the long-gate structure provides our transistor with an inertial assisted re-accumulation, generating two excitatory postsynaptic current peaks and enhanced paired-pule facilitation up to ∼265%. Furthermore, the presence of the long-gate structure enables our transistor to exhibit excellent learning and simulate Ebbinghaus' memory. In addition, physical mechanic about its humidity perception has been analyzed and discussed. This study provides a unique platform for designing high-performance carbon-based artificial synapses enabling integrated functions of sensing, storage, and computation for the neuromorphic system.

Funder

Open project of Key Laboratory of Semiconductor Materials Science

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3