Predicting the electronic density response of condensed-phase systems to electric field perturbations

Author:

Lewis Alan M.1ORCID,Lazzaroni Paolo1ORCID,Rossi Mariana1ORCID

Affiliation:

1. Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany

Abstract

We present a local and transferable machine-learning approach capable of predicting the real-space density response of both molecules and periodic systems to homogeneous electric fields. The new method, Symmetry-Adapted Learning of Three-dimensional Electron Responses (SALTER), builds on the symmetry-adapted Gaussian process regression symmetry-adapted learning of three-dimensional electron densities framework. SALTER requires only a small, but necessary, modification to the descriptors used to represent the atomic environments. We present the performance of the method on isolated water molecules, bulk water, and a naphthalene crystal. Root mean square errors of the predicted density response lie at or below 10% with barely more than 100 training structures. Derived polarizability tensors and even Raman spectra further derived from these tensors show good agreement with those calculated directly from quantum mechanical methods. Therefore, SALTER shows excellent performance when predicting derived quantities, while retaining all of the information contained in the full electronic response. Thus, this method is capable of predicting vector fields in a chemical context and serves as a landmark for further developments.

Funder

Alexander von Humboldt-Stiftung

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3