Phase-field modeling of interaction between void and grain boundaries and its swelling effect

Author:

Han G. M.12ORCID

Affiliation:

1. CAEP Software Center for High Performance Numerical Simulation , Huayuan Road 6, Beijing 100088, China and , Fenghao East Road 2, Beijing 100088, China

2. Institute of Applied Physics and Computational Mathematics , Huayuan Road 6, Beijing 100088, China and , Fenghao East Road 2, Beijing 100088, China

Abstract

The interaction of irradiated voids and grain boundaries in zirconium is systematically studied by using a composite multiphase-field model that couples the evolution of irradiated voids and grain boundaries. In phase-field modeling, the polycrystalline evolution phase-field governing equation and void evolution phase-field governing equation are coupled together for modeling. In the numerical solution, the aforementioned two sets of equations are coupled to solve the absorption of vacancies and interstitial atoms by grain boundaries. First, we studied the influence of the existence of voids on the evolution of polycrystalline grains when the voids did not evolve. Thereafter, we examined the influence of the grain boundaries on the evolution of the voids when the grain boundaries did not evolve. Finally, we analyzed the interaction process between the grain boundaries and voids at the same time. The preceding simulation research can reproduce the pinning effect of the void on the grain boundary and the phenomenon that the grain boundary acts on the void evolution process to form a “void-denuded zone” near the grain boundary. The interaction mechanism between grain boundaries and voids is revealed through systematic simulation research. On this basis, the influence of the interaction process between the grain boundary and the void on the swelling behavior is further discussed.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3