Effect of interlayer exchange coupling in spin-torque nano oscillator

Author:

Arun R.1ORCID,Gopal R.12ORCID,Chandrasekar V. K.12ORCID,Lakshmanan M.1ORCID

Affiliation:

1. Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620024, India

2. Department of Physics, Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, India

Abstract

The dynamics of the magnetization of the free layer in a spin-torque nano oscillator (STNO) influenced by a noncollinear alignment between the magnetizations of the free and pinned layers due to an interlayer exchange coupling has been investigated theoretically. The orientations of the magnetization of the free layer with that of the pinned layer have been computed through the macrospin model and they are found to match well with experimental results. The bilinear and biquadratic coupling strengths make the current to switch the magnetization between two states or oscillate steadily. The expressions for the critical currents between which oscillations are possible and the critical bilinear coupling strength below which oscillations are not possible are derived. The frequency of the oscillations is shown to be tuned and increased to or above 300 GHz by the current, which is the largest to date among nanopillar-shaped STNOs.

Funder

DST - SERB-

DST- FIST-

DST - SERB- National Science Chair

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3