2H-MoS2 nanosheets-based binder-free electrode material for supercapacitor

Author:

Ali Salamat1,Zhang Xiaofeng2,Javed Muhammad Sufyan2ORCID,Zhang Xiaqing1,Liu Guo2,Wei Xuegang1,Chen Hao3,Imran Muhammad4,Wang Jiatai3,Han Weihua2ORCID,Qi Jing1ORCID

Affiliation:

1. School of Materials and Energy, Lanzhou University, Lanzhou 730000, China

2. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

3. College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China

4. Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia

Abstract

Developing advanced electrode materials for supercapacitors (SCs) has received incredible attention. The suitable electrode for high capacitance and energy density are significant challenges for SCs. This work reports an efficient hydrothermal synthesis of MoS2 nanosheets on carbon cloth (MoS2@CC). The large surface area of the binder-free MoS2@CC electrode provides rich active sites and an improved electrolyte ion diffusion rate. The MoS2@CC electrode exhibits good electrochemical performance by delivering a high specific capacitance of 947 F g−1 at the current density of 1.0 A g−1 and retains an excellent capacitance of 96.5% over 10 000 cycles. The high performance of the MoS2@CC electrode can be clarified through density functional theory (DFT) calculations. The DFT outcomes reveal that the electrode possesses favorable Li-ion intercalation and adsorption properties. The calculated adsorption energy of −0.352 eV at the hollow site shows the high stability of the system. The low energy barrier of path 1 (0.83 eV) easily facilitates Li-ions in the electrode material, which is beneficial for its fast electrochemical performance. The obtained results of the MoS2@CC electrode present improved pseudocapacitive performance, showing a significant possibility for high-performance SCs' application.

Funder

Natural Science Foundation of Gansu Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3