Affiliation:
1. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Abstract
This work investigates the strain-gradient-driven domain wall (DW) motion in a ferromagnetic-heavy-metal–piezoelectric heterostructure with perpendicular magnetic anisotropy and the interface Dzyaloshinskii-Moriya interaction (iDMI). The simulation results show that a larger iDMI can lead to greater tilting of the DW surface as the DW approaches the end of the wire. When the DW stops, the tilt angle is zero, and the DW is perpendicular to the nanowire. The DW displacement and the velocity are affected by the iDMI coefficient, strain-gradient amplitude, and Gilbert damping. We also show that such a mechanism can be used to implement a leaky-integrate-fire spiking neuron device with the controllable temporary location of the DW serving as the analog membrane potential of a biological neuron, which is promising for future DW-based artificial neural devices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Fundamental Research Funds for the Provincial Universities of Zhejiang
Start-up Fund from the China Jiliang University
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献