Deep learning fluid flow reconstruction around arbitrary two-dimensional objects from sparse sensors using conformal mappings

Author:

Özbay Ali Girayhan1ORCID,Laizet Sylvain1ORCID

Affiliation:

1. Turbulence Simulation Group, Department of Aeronautics, Imperial College London, SW7 2AZ London, United Kingdom

Abstract

The usage of neural networks (NNs) for flow reconstruction (FR) tasks from a limited number of sensors is attracting strong research interest owing to NNs’ ability to replicate high-dimensional relationships. Trained on a single flow case for a given Reynolds number or over a reduced range of Reynolds numbers, these models are unfortunately not able to handle flows around different objects without re-training. We propose a new framework called Spatial Multi-Geometry FR (SMGFR) task, capable of reconstructing fluid flows around different two-dimensional objects without re-training, mapping the computational domain as an annulus. Different NNs for different sensor setups (where information about the flow is collected) are trained with high-fidelity simulation data for a Reynolds number equal to ∼300 for 64 objects randomly generated using Bezier curves. The performance of the models and sensor setups is then assessed for the flow around 16 unseen objects. It is shown that our mapping approach improves percentage errors by up to 15% in SMGFR when compared to a more conventional approach where the models are trained on a Cartesian grid and achieves errors under 3%, 10%, and 30% for predictions of pressure, velocity, and vorticity fields, respectively. Finally, SMGFR is extended to predictions of snapshots in the future, introducing the Spatiotemporal MGFR (STMGFR) task. A novel approach is developed for STMGFR involving splitting deep neural networks into a spatial and a temporal component. We demonstrate that this approach is able to reproduce, in time and in space, the main features of flows around arbitrary objects.

Funder

Department of Aeronautics, Imperial College London

Nvidia

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3