Exchange–correlation potential built on the derivative discontinuity of electron density

Author:

Huang Chen1ORCID

Affiliation:

1. Department of Scientific Computing, Materials Science and Engineering Program, and National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32306, USA

Abstract

Electronic structures are fully determined by the exchange–correlation (XC) potential. In this work, we develop a new method to construct reliable XC potentials by properly mixing the exact exchange and the local density approximation potentials in real space. The spatially dependent mixing parameter is derived based on the derivative discontinuity of electron density and is first-principle. We derived the equations for solving the mixing parameter and proposed an approximation to simplify these equations. Based on this approximation, this new method gives reasonable predictions for the ionization energies, fundamental gaps, and singlet–triplet energy differences for various molecular systems. The impact of the approximation on the constructed XC potentials is examined, and it is found that the quality of the XC potentials can be further improved by removing the approximation. This work demonstrates that the derivative discontinuity of electron density is a promising constraint for constructing high-quality XC potentials.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3