Mode-coupling theory for mixtures of athermal self-propelled particles

Author:

Debets Vincent E.12ORCID,Janssen Liesbeth M. C.12ORCID

Affiliation:

1. Department of Applied Physics, Eindhoven University of Technology 1 , P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2. Institute for Complex Molecular Systems, Eindhoven University of Technology 2 , P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Dense or glassy active matter, as a result of its remarkable resemblance to passive glass-forming materials, is enjoying increasing scientific interest. To better grasp the subtle effect of active motion on the process of vitrification, a number of active mode-coupling theories (MCTs) have recently been developed. These have proven capable of qualitatively predicting important parts of the active glassy phenomenology. However, most efforts so far have only considered single-component materials, and their derivations are arguably more complex than the standard MCT case, which might hinder broader usage. Here we present a detailed derivation of a distinct active MCT for mixtures of athermal self-propelled particles that is more transparent than previously introduced versions. The key insight is that we can follow a similar strategy for our overdamped active system as is typically used for passive underdamped MCT. Interestingly, when only considering one particle species, our theory gives the exact same result as the one obtained in previous work, which employed a highly different mode-coupling strategy. Moreover, we assess the quality of the theory and its novel extension to multi-component materials by using it to predict the dynamics of a Kob–Andersen mixture of athermal active Brownian quasi-hard spheres. We demonstrate that our theory is able to capture all qualitative features, most notably the location of the optimum of the dynamics when the persistence length and cage length coincide, for each combination of particle types.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3