Evaluation of the excitation spectra with diffusion Monte Carlo on an auxiliary bosonic ground state

Author:

Reboredo Fernando A.1ORCID,Kent Paul R. C.2ORCID,Krogel Jaron T.1ORCID

Affiliation:

1. Materials Science and Technology Division, Oak Ridge National Laboratory 1 , Oak Ridge, Tennessee 37831, USA

2. Computational Sciences and Engineering Division, Oak Ridge National Laboratory 2 , Oak Ridge, Tennessee 37831, USA

Abstract

We aim to improve upon the variational Monte Carlo (VMC) approach for excitations replacing the Jastrow factor by an auxiliary bosonic (AB) ground state and multiplying it by a fermionic component factor. The instantaneous change in imaginary time of an arbitrary excitation in the original interacting fermionic system is obtained by measuring observables via the ground-state distribution of walkers of an AB system that is subject to an auxiliary effective potential. The effective potential is used to (i) drive the AB system’s ground-state configuration space toward the configuration space of the excitations of the original fermionic system and (ii) subtract from a diffusion Monte Carlo (DMC) calculation contributions that can be included in conventional approximations, such as mean-field and configuration interaction (CI) methods. In this novel approach, the AB ground state is treated statistically in DMC, whereas the fermionic component of the original system is expanded in a basis. The excitation energies of the fermionic eigenstates are obtained by sampling a fermion–boson coupling term on the AB ground state. We show that this approach can take advantage of and correct for approximate eigenstates obtained via mean-field calculations or truncated interactions. We demonstrate that the AB ground-state factor incorporates the correlations missed by standard Jastrow factors, further reducing basis truncation errors. Relevant parts of the theory have been tested in soluble model systems and exhibit excellent agreement with exact analytical data and CI and VMC approaches. In particular, for limited basis set expansions and sufficient statistics, AB approaches outperform CI and VMC in terms of basis size for the same systems. The implementation of this method in current codes, despite being demanding, will be facilitated by reusing procedures already developed for calculating ground-state properties with DMC and excitations with VMC.

Funder

MSED Basic Energy Sciences DOE

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3