Fluorographene with impurities as a biomimetic light-harvesting medium

Author:

Sláma Vladislav1ORCID,Rajabi Sayeh1ORCID,Mančal Tomáš1ORCID

Affiliation:

1. Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic

Abstract

We investigate the prospect of using a two-dimensional material, fluorographene, to mimic the light-harvesting function of natural photosynthetic antennas. We show by quantum chemical calculations that isles of graphene in a fluorographene sheet can act as quasi-molecules similar to natural pigments from which the structures similar in function to photosynthetic antennas can be built. The graphene isles retain enough identity so that they can be used as building blocks to which intuitive design principles of natural photosynthetic antennas can be applied. We examine the excited state properties, stability, and interactions of these building blocks. Constraints put on the antenna structure by the two-dimensionality of the material as well as the discrete nature of fluorographene sheet are studied. We construct a hypothetical energetic funnel out of two types of quasi-molecules to show how a limited number of building blocks can be arranged to bridge the energy gap and spatial separation in excitation energy transfer. Energy transfer rates for a wide range of the system–environment interaction strengths are predicted. We conclude that conditions for the near unity quantum efficiency of energy transfer are likely to be fulfilled in fluorographene with the controlled arrangement of quasi-molecules.

Funder

Czech Science Foundation

Neuron Fund for Support of Science

National Grid Infrastructure MetaCentrum under the program Projects of Large Research, and Innovation Infrastructure

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3