Theoretical study of the O(3P) + CN(X2Σ+) → CO(X1Σ+) + N(2D)/N(4S) reactions

Author:

Lu Dandan1ORCID,Alves Márcio O.2ORCID,Galvão Breno R. L.12ORCID,Guo Hua1ORCID

Affiliation:

1. Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico 1 , Albuquerque, New Mexico 87131, USA

2. Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG 2 , Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil

Abstract

The barrierless exothermic reactions between atomic oxygen and the cyano radical, O(3P) + CN(X2Σ+) → CO(X1Σ+) + N(2D)/N(4S), play a significant role in combustion, astrochemistry, and hypersonic environments. In this work, their dynamics and kinetics are investigated using both wave packet (WP) and quasi-classical trajectory (QCT) methods on recently developed potential energy surfaces of the 12A′, 12A,″ and 14A″ states. The product state distributions in the doublet pathway obtained with the WP method for a few partial waves show extensive internal excitation in the CO product. This observation, combined with highly oscillatory reaction probabilities, signals a complex-forming mechanism. The statistical nature of the reaction is confirmed by comparing the WP results with those from phase space theory. The calculated rate coefficients using the WP (with a J-shifting approximation) and QCT methods exhibit agreement with each other near room temperature, 1.77 × 10−10 and 1.31 × 10−10 cm3 molecule−1 s−1, but both are higher than the existing experimental results. The contribution of the quartet pathway is small at room temperature due to a small entrance channel bottleneck. The QCT rate coefficients are further compared with experimental results above 3000 K, and the agreement is excellent.

Funder

U.S. Department of Defense

National Aeronautics and Space Administration

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3