Impact force of ring bouncing on superhydrophobic surface with a bead

Author:

Abstract

The impingement of drops on superhydrophobic surfaces with macrotextures would result in a reduced contact time, which is crucial in applications, such as anti-icing and anti-frost. We experimentally investigate the impact force and deformation of a water drop falling on superhydrophobic surfaces decorated with a water-repellent bead by employing a high-sensitivity force transducer and high-speed cameras operated in synchrony. The drop falling on the water-repellent bead bounces off in the form of a liquid ring when the Weber number We > 37, and this leads to a shorter contact time compared with an impingement on a flat surface. Four regimes, referred to as the air cavity, column jet, intact ring, and splashing, are identified based on the characteristics of drop deformation and peak forces. Two predominant peaks are identified in the force curves in most cases. The first peak originates from the momentum change of the inertial impact; the second peak in the first two regimes originates from the momentum change of the Worthington jet, while that in the last two regimes originates from the momentum change of the bouncing ring. Furthermore, a third peak appears when the oscillation of the lifting drop reattaches the substrate at a moderate Weber number. We investigate the drop dynamics in different regimes and theoretically explain the We dependence of peak force related to bouncing in the intact-ring regime. The discoveries obtained in this study will advance our understanding of the dynamics of drop impingement on superhydrophobic surfaces with macrotextures for reducing the contact time.

Funder

National Natural Science Foundation of China

Tsinghua University Initiative Scientific Research Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3