Affiliation:
1. Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
Abstract
The accuracy of any observable derived from multi-scale simulations based on Frozen-Density Embedding Theory (FDET) is affected by two inseparable factors: (i) the approximation for the [Formula: see text] component of the FDET energy functional and (ii) the choice of the density ρ B(r) for which the FDET eigenvalue equation for the embedded wavefunction is solved. A procedure is proposed to estimate the relative significance of these two factors. Numerical examples are given for four weakly bound intermolecular complexes. It is shown that the violation of the non-negativity condition is the principal source of error in the FDET energy if ρ B is the density of the isolated environment, i.e., it is generated without taking into account the interactions with the embedded species. Reduction of both the magnitude of the violation of the non-negativity condition and the error in the FDET energy can be pragmatically achieved by means of the explicit treatment of the electronic polarization of the environment.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献