DLTS analysis of interface and near-interface bulk defects induced by TCO-plasma deposition in carrier-selective contact solar cells

Author:

Hara Tomohiko1ORCID,Ohshita Yoshio1

Affiliation:

1. Toyota Technological Institutemailto , Nagoya, Japan

Abstract

We investigate the electrical characteristics of defects at the SiO2/Si interface, within the adjacent Si crystal, and through the depth profile of the bulk defect using three-dimensional deep-level transient spectroscopy (3D-DLTS). These defects are introduced by the reactive plasma deposition technique employed for depositing transparent conductive oxides in the fabrication of carrier-selective contact-type solar cells. To control the surface potential near the Si surface, we apply a varying voltage to obtain DLTS signals as functions of both temperature and Fermi level at the SiO2/Si interface. Using machine learning for 3D-DLTS spectral analysis, we estimate the capture cross sections, energy levels, densities, and depth profiles of these process-induced defects. The experimental results indicate the existence of three types of electron traps within the bulk defects, ranging from the interface to a depth of ∼70 nm. The electrical properties of these bulk defects suggest the presence of oxygen-related defects within Si. On the other hand, regarding the properties of interface defects, the capture cross sections and the defect densities are estimated as a function of their energy levels. They suggest that the defects at the SiO2/Si interface are likely oxygen-related PL centers.

Funder

Ministry of Education, Culture, Sports, Science and Technology

New Energy and Industrial Technology Development Organization

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3