Large eddy simulation and combined control of corner separation in a compressor cascade

Author:

Meng Tongtong1,Li Xin2,Zhou Ling1ORCID,Zhu Huiling1ORCID,Li Jiabin2,Ji Lucheng2

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Institute for Aero Engine, Tsinghua University, Beijing 100084, China

Abstract

Due to the demand for higher aerodynamic performance of compressors, thoroughly investigating the high-loss flow in the corner region and effectively controlling it are important. In this paper, a novel parameterization method based on the extended free form deformation (EFFD) technique and the constraints for EFFD's control points is proposed. Then, considering the features of typical control techniques and the degrees of freedom of both the blade and hub geometries, the combined control approach is implemented in the corner region of a linear cascade. Furthermore, large eddy simulation is used to simulate the flow, verify the effects of the combined control approach, and explore the underlying physical mechanisms of corner separation. The numerical results show that the combined control can significantly decrease the mean total pressure loss. The loss reduction at the design point reaches 6.05%, while it decreases by almost 2.5% near the stall/blockage operating conditions. The combined control increases the radial pressure gradient at the rear of the blade by depressing the hub and stretching the suction surface. Consequently, although the radial flow slightly increases the mixing loss in the mainstream at large incidences, the accumulation of low-energy flow in the boundary layer and the corresponding development of the corner vortex are significantly restrained. Moreover, by redistributing the static pressure on the hub, the combined control weakens the migration of crossing flow and obstructs the low-velocity flow from the pressure side involved in the separation. Overall, the combined control contributes to reducing the corner separation and improving the aerodynamic performance.

Funder

National Major Science and Technology Projects of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3