Low temperature deposition of vanadium dioxide on III–V semiconductors and integration on mid-infrared quantum cascade lasers

Author:

Boulley Laurent1ORCID,Maroutian Thomas1ORCID,Goulain Paul1ORCID,Babichev Andrey23ORCID,Egorov Anton3,Li Lianhe4ORCID,Linfield Edmund4ORCID,Colombelli Raffaele1ORCID,Bousseksou Adel1ORCID

Affiliation:

1. Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR 9001, Université Paris-Saclay, 91120 Palaiseau, France

2. Ioffe Institute, 194021 Saint Petersburg, Russia

3. ITMO University, 197101 Saint Petersburg, Russia

4. School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

Abstract

We demonstrate low temperature deposition conditions for vanadium dioxide (VO2) phase change material by pulsed laser deposition, which are compatible with III–V semiconductors heterostructures typically used in optoelectronic applications. The characterizations of the VO2 coated thin films grown on GaAs show a 50% change in optical reflectivity in the mid-infrared range and a variation of electric conductivity of two orders of magnitude between the insulating (low temperature) and the metallic (high temperature) states. The transition temperature is estimated around 68 °C (341 K). We also study the functionalization of mid-infrared quantum cascade lasers (QCLs) (operating at wavelengths λ ∼ 7–8  μm) with VO2 layers, in view of engineering the laser emission properties with an integrated VO2 layer. We demonstrate QCLs that integrate a VO2 layer on the surface that interacts with the guided laser mode. A maximum operating temperature of 61 °C (334 K) has been measured.

Funder

Agence Nationale de la Recherche

Campus France

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequency tunable mid-infrared split ring resonators on a phase change material;Photonics and Nanostructures - Fundamentals and Applications;2024-09

2. Single-mode lasing in ring-cavity surface-emitting lasers;Journal of Optical Technology;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3