Detection of an internal solitary wave by the underwater vehicle based on machine learning

Author:

Zhang Miao1,Hu Haibao1ORCID,Du Peng1ORCID,Chen Xiaopeng1ORCID,Li Zhuoyue1,Wang Chao1,Cheng Lu1,Tang Zijian1ORCID

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China

Abstract

A new hydrodynamic artificial intelligence detection method is proposed to realize the accurate detection of internal solitary waves (ISWs) by the underwater vehicle. Two deep convolution neural network structures are established to predict the relative position between the underwater vehicle and ISW and the flow field around the underwater vehicle. By combining field observation data and the computational fluid dynamics method, accurate numerical simulation of the motion of the underwater vehicle in a real ISW environment is achieved. The training process for the neural network is implemented by building a dataset from the above results. It is shown that the position prediction accuracy of the network for ISW is larger than 95%. For the prediction of the flow field around the underwater vehicle, it is found that the addition of the convolutional block attention module can increase the prediction accuracy. Moreover, the reduction of the number of sensors by the dynamic mode decomposition method and k-means clustering method is realized. The accuracy can still reach 92% even when the number of sensors is reduced. This study is the first to use hydrodynamic signals for the detection of ISW, which can enhance the navigation safety of underwater vehicles.

Funder

National Natural Science Foundation of China

Shaanxi Provincial Key R&D Program

QinChuangyuan high-level innovative and entrepreneurial talents introduction plan

Major Science and Technology Projects in Henan Province

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3