Small multimodal thermometry with detonation-created multi-color centers in detonation nanodiamond

Author:

So Frederick T.-K.12ORCID,Hariki Nene1ORCID,Nemoto Masaya1,Shames Alexander I.3ORCID,Liu Ming4,Tsurui Akihiko4,Yoshikawa Taro4,Makino Yuto4ORCID,Ohori Masanao1,Fujiwara Masanori1ORCID,Herbschleb Ernst David1ORCID,Morioka Naoya15ORCID,Ohki Izuru2ORCID,Shirakawa Masahiro26,Igarashi Ryuji27ORCID,Nishikawa Masahiro4ORCID,Mizuochi Norikazu15ORCID

Affiliation:

1. Institute for Chemical Research, Kyoto University, Gokasho, Uji 1 , Kyoto 611-0011, Japan

2. Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 2 , Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan

3. Department of Physics, Ben Gurion University of the Negev 3 , 8410501 Beer-Sheva, Israel

4. Daicel Corporation 4 , 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan

5. 5 Center for Spintronics Research Network, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

6. Department of Molecular Engineering, Graduate School of Engineering, Kyoto University 6 , Nishikyo-Ku, Kyoto 615-8510, Japan

7. School of Life Science and Technology, Tokyo Institute of Technology 7 , Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Abstract

Detonation nanodiamond (DND) is the smallest class of diamond nanocrystal capable of hosting various color centers with a size akin to molecular pores. Their negatively charged nitrogen-vacancy center (NV−) is a versatile tool for sensing a wide range of physical and even chemical parameters at the nanoscale. The NV− is, therefore, attracting interest as the smallest quantum sensor in biological research. Nonetheless, recent NV− enhancement in DND has yet to yield sufficient fluorescence per particle, leading to efforts to incorporate other group-IV color centers into DND. An example is adding a silicon dopant to the explosive mixture to create negatively charged silicon-vacancy centers (SiV−). In this paper, we report on efficient observation (∼50% of randomly selected spots) of the characteristic optically detected magnetic resonance (ODMR) NV− signal in silicon-doped DND (Si-DND) subjected to boiling acid surface cleaning. The NV− concentration is estimated by continuous-wave electron spin resonance spectroscopy to be 0.35 ppm without the NV− enrichment process. A temperature sensitivity of 0.36K/Hz in an NV− ensemble inside an aggregate of Si-DND is achieved via the ODMR-based technique. Transmission electron microscopy survey reveals that the Si-DNDs core sizes are ∼11.2 nm, the smallest among the nanodiamond’s temperature sensitivity studies. Furthermore, temperature sensing using both SiV− (all-optical technique) and NV− (ODMR-based technique) in the same confocal volume is demonstrated, showing Si-DND’s multimodal temperature sensing capability. The results of the study thereby pave a path for multi-color and multimodal biosensors and for decoupling the detected electrical field and temperature effects on the NV− center.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3