Numerical study of the effects of fire on the flow and wake structures of an idealized building

Author:

Sun YujiaORCID,Chen Qing,Zheng ShuORCID,Liu ChaoORCID

Abstract

Fire hazard is a crucial issue in urban arears. Fire plumes have large buoyancy forces and can significantly change the flow pattern around buildings. However, the interaction of these plumes with buildings under atmospheric boundary flow conditions has rarely been studied, and the effect on the wake characteristics of the buildings remains unclear. To investigate the interaction of fire with the wake flow around a building, the large-eddy simulation framework is used to simulate the flow and wake structures of an idealized cubic building. Fire is found to produce significant changes in the wake structures. In particular, fire leads to strong fire-swirl vortices near the trailing edges of the building and intense fire-plume vortices in the midair region downstream of the building. In the time-averaged results, a pair of tip vortices appears behind the top corners of the building and counter-rotating vortex pairs are observed downstream.

Funder

Proof-of-Concept Project of Zhongguancun Open Laboratory

High Performance Computing Center of Nanjing University of Information Science & Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3