Double-layer acoustic metasurface for the suppression of the Mack second mode in hypersonic boundary-layer flow

Author:

Tian Xudong1ORCID,Liu Tuo2ORCID,Wang Tiantian1ORCID,Zhu Jie3ORCID,Wen Chihyung4ORCID

Affiliation:

1. Key Laboratory of Traffic Safety on Track, School of Traffic Transportation Engineering, Central South University, 410075 Hunan, China

2. Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

3. Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

4. Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Abstract

An acoustic metasurface consisting of two layers of perforated plates is proposed for suppression of the Mack second mode in hypersonic boundary-layer flow. The upper layer with very tiny holes is permeable to acoustic waves and hardly alters the background hypersonic boundary-layer flow, offering rather low resistive and inductive components of surface acoustic impedance. The bottom layer with large and sparse square holes is attached to a rigid wall surface and forms a periodic array of chambers, each covering multiple holes of the upper layer, which can adjust the impedance phase by working as a capacitive component. Based on a linear stability analysis of hypersonic boundary-layer instability, such an acoustic metasurface satisfying the required surface impedance is designed and numerically investigated. The results show that the metasurface can efficiently suppress the Mack second mode over a relatively wide bandwidth. This work provides an alternative strategy for the design of porous walls for hypersonic boundary-layer stabilization.

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3