Affiliation:
1. Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
Abstract
In recent years, machine learning has had an enormous success in fitting ab initio potential-energy surfaces to enable efficient simulations of molecules in their ground electronic state. In order to extend this approach to excited-state dynamics, one must not only learn the potentials but also nonadiabatic coupling vectors (NACs). There is a particular difficulty in learning NACs in systems that exhibit conical intersections, as due to the geometric-phase effect, the NACs may be double-valued and are, thus, not suitable as training data for standard machine-learning techniques. In this work, we introduce a set of auxiliary single-valued functions from which the NACs can be reconstructed, thus enabling a reliable machine-learning approach.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献