Highly efficient water splitting in step-scheme PtS2/GaSe van der Waals heterojunction

Author:

Zhu Zhiheng1,Zhang Chunxiao12ORCID,Zhou Mengshi1,He Chaoyu1ORCID,Li Jin1ORCID,Ouyang Tao1ORCID,Tang Chao1,Zhong Jianxin1

Affiliation:

1. Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China

2. School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong 255100, People's Republic of China

Abstract

Constructing junction architectures is one of the most promising strategies to improve the photocatalytic activity of two-dimensional semiconductors for the splitting of water. Using first-principles calculations, we demonstrate that the van der Waals heterojunction consisting of PtS2 and GaSe monolayers is a potential step-scheme photocatalyst with high solar-to-hydrogen (STH) efficiency. The stability of the heterojunction is confirmed by phonon dispersion spectrum calculation and ab initio molecular-dynamics simulation. In such a step-scheme heterojunction, GaSe serves as a reduction photocatalyst and PtS2 acts as an oxidation photocatalyst. The built-in electric field and band bending are formed since the work function difference and electrostatic potential difference promote the photo-generated electron (hole) to the conductance band minimum (valence band maximum) of GaSe (PtS2), inducing a step-scheme migrating route and guaranteeing strong redox ability of photo-generated carriers. The hydrogen evolution reduction can proceed driven solely by the photogenerated electrons, while the barrier of the oxygen evolution reaction is only 0.89 eV. More intriguingly, the STH efficiency is predicted up to 36.9% along with the improvement of visible light absorption. The STH efficiency can be enhanced effectively by both in-plane strain and compressive vertical strain. Our findings provide valuable guidance for the potential applications of PtS2/GaSe heterojunction as a photocatalyst for the photocatalytic splitting of water.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Hunan Provincial Education Department

Natural Science Foundation of Hunan Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3