A three-dimensional thermochemical nonequilibrium model for simulating air plasma flows around an inflatable membrane reentry vehicle

Author:

Yu MinghaoORCID,Wang Wei,Hu ZhiqiangORCID,Wang Bo

Abstract

The inflatable membrane reentry vehicle (IMRV) is one of the innovative aircrafts for next-generation space transport systems because of its reduced aerodynamic heating. In this study, a three-dimensional (3D) thermochemical nonequilibrium model is developed for simulating air plasma flows around an IMRV. This 3D nonequilibrium model includes the coupling of Navier–Stokes equations, 11 species, and 20 chemical reactions of air, a two-temperature model, and shear stress transfer k–ω turbulent transport equations. The simulated results are validated and compared with the corresponding experimental and numerical data published. Generally, they agree well with each other. It is concluded that the flight attack angle of the IMRV has an important impact on the flight stability. When the IMRV flies at an angle of attack of 0°, the translational-rotational and vibrational-electronic temperatures increase rapidly in the surge layer and decrease gradually near the wall. The wall pressure and heat flux decrease gradually along the capsule from the head to the inflatable film, increase rapidly where the inflatable film joins the rings, and decrease rapidly after the shoulder. The chemical and thermal nonequilibrium model developed in this study might be an accurate, stable, and low-cost modeling tool required for the optimal design of hypersonic reentry vehicles.

Funder

National Natural Science Foundation of China

Key Laboratory of Hypersonic Aerodynamic Force and Heat Technology, AVIC Aerodynamics Research Institute

Key Laboratory of Equipment Efficiency in Extreme Environment, Ministry of Education

Publisher

AIP Publishing

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3