Plasma thermal transport with a generalized 8-moment distribution function

Author:

Hamilton Jason1ORCID,Seyler Charles E.2ORCID

Affiliation:

1. School of Applied and Engineering Physics and Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853, USA

2. School of Electrical and Computer Engineering and Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853, USA

Abstract

Moment equations that model plasma transport require an ansatz distribution function to close the system of equations. The resulting transport is sensitive to the specific closure used, and several options have been proposed in the literature. Two different 8-moment distribution functions can be generalized to form a single-parameter family of distribution functions. The transport coefficients resulting from this generalized distribution function can be expressed in terms of this free parameter. This provides the flexibility of matching the 8-moment model to some validating result at a given magnetization value, such as Braginskii's transport, or the more recent results of Davies et al. [Phys. Plasma, 28, 012305 (2021)]. This process can be thought of as a solution for the 8-moment distribution function that matches the value of a transport coefficient given by a Chapman–Enskog expansion while retaining the improved physical properties, such as finite propagation speeds and time dependence, which belong to the hyperbolic moment models. Since the presented generalized distribution function only has a single free parameter, only a single transport coefficient can be matched at a time. However, this generalization process may be extended to provide multiple free parameters. The focus of this Brief Communication is on the dramatically improved thermal conductivity of the proposed model compared to the two base moment models.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Reference12 articles.

1. Formulation of 8-moment plasma transport with application to the Nernst effect

2. On the kinetic theory of rarefied gases

3. Improved Transport Equations for Fully Ionized Gases

4. J. Hamilton , “ On the transport of plasma using a 13-moment model,” Ph.D. thesis ( Cornell University, 2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3