Fracture energy of high-Poisson's ratio oxide glasses

Author:

To Theany1ORCID,Gamst Christian1,Østergaard Martin B.1ORCID,Jensen Lars R.2ORCID,Smedskjaer Morten M.1ORCID

Affiliation:

1. Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark

2. Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark

Abstract

The apparent relationship between Poisson's ratio and fracture energy has been used to guide the discovery of ductile glasses with a brittle-to-ductile (BTD) transition at Poisson's ratio around 0.32. Most organic and metallic glasses possess Poisson's ratio above 0.32, and thus, feature fracture energy that is around three orders of magnitude higher than that of oxide glasses, which feature Poisson's ratio typically below 0.30. However, whether the BTD transition can also be observed in oxide glasses remains unknown due to the lack of fracture energy measurements on oxide glasses with high Poisson's ratio. In this work, we measure the fracture energy of six oxide glasses with high Poisson's ratio between 0.30 and 0.34. We find no clear relationship between the two parameters even in those that possess the same Poisson's ratio as ductile metallic glasses. This suggests that Poisson's ratio is not the main property to enhance the fracture energy of oxide glasses. To this end, we instead find a positive relation between fracture energy and Young's modulus of oxide glasses, and even for some metallic glasses, which could explain their absence of ductility.

Funder

Danmarks Frie Forskningsfond

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference38 articles.

1. The fracture toughness of inorganic glasses

2. Advancing the Mechanical Performance of Glasses: Perspectives and Challenges

3. T. To, “Fracture toughness and fracture surface of inorganic and Non-metallic glasses,” Ph.D. thesis (Université de Rennes 1, 2019).

4. Nanoductility in silicate glasses is driven by topological heterogeneity

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3