Ultrafast control of laser-induced spin-dynamics scenarios on two-dimensional Ni3@C63H54 magnetic system

Author:

Barhoumi Mohamed1ORCID,Liu Jing2ORCID,Lefkidis Georgios1ORCID,Hübner Wolfgang1ORCID

Affiliation:

1. Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau 1 , P.O. Box 3049, 67653 Kaiserslautern, Germany

2. Institute of Theoretical Chemistry, Ulm University 2 , 89081 Ulm, Germany

Abstract

The concept of building logically functional networks employing spintronics or magnetic heterostructures is becoming more and more popular today. Incorporating logical segments into a circuit needs physical bonds between the magnetic molecules or clusters involved. In this framework, we systematically study ultrafast laser-induced spin-manipulation scenarios on a closed system of three carbon chains to which three Ni atoms are attached. After the inclusion of spin–orbit coupling and an external magnetic field, different ultrafast spin dynamics scenarios involving spin-flip and long-distance spin-transfer processes are achieved by various appropriately well-tailored time-resolved laser pulses within subpicosecond timescales. We additionally study the various effects of an external magnetic field on spin-flip and spin-transfer processes. Moreover, we obtain spin-dynamics processes induced by a double laser pulse, rather than a single one. We suggest enhancing the spatial addressability of spin-flip and spin-transfer processes. The findings presented in this article will improve our knowledge of the magnetic properties of carbon-based magnetic molecular structures. They also support the relevant experimental realization of spin dynamics and their potential applications in future molecular spintronics devices.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3