Electron binding energies of SO2 at the surface of a water cluster

Author:

Martins João B. L.1ORCID,Cabral Benedito J. C.12ORCID

Affiliation:

1. Instituto de Química, Universidade de Brasília 1 , Brasília, Brazil

2. BioSystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa 2 , 1749-016 Lisboa, Portugal

Abstract

The electronic properties of SO2 at the surface of a water cluster were investigated by employing a combination of Born–Oppenheimer molecular dynamics and electron propagator theory (EPT). In our work, we utilized a revised version of the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional, which incorporates empirical corrections for dispersion interactions in line with a recent study of the air–water interface conducted by Ohto et al. [J. Phys. Chem. Lett. 10(17), 4914–4919 (2019)]. Polarization effects induce a significant broadening of the electron binding energy distribution, as predicted by EPT. This broadening can result in a substantial increase in electron affinity, impacting the chemical reactivity of SO2 at the air–water interface, a topic of significant and recent research interest. We discuss the relationship between electron binding energies (EBEs) and the specific connections of SO2 to water. The results indicate that configurations involving an OS⋯H bond tend to yield higher electron affinities compared to complex formation through S⋯OW bonds. Surprisingly, SO2 molecules not bound to water molecules according to a specific criterion may also exhibit higher electron affinities. This feature can be explained by the role played by the polarization field from water molecules. Our best estimate for the HOMO–LUMO (H–L) gap of SO2 at the surface of a water cluster is 11.6 eV. Very similar H–L gaps are predicted for isolated and micro-solvated SO2. Fukui functions for the gas phase, and the micro-solvated SO2–H2O complex supports the view that the LUMO is predominantly localized on the SO2 moiety.

Funder

Fundação de Apoio à Pesquisa do Distrito Federal

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3