Affiliation:
1. Chemical Physics Theory Group, Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
Abstract
Micro- and nano-swimmers, moving in a fluid solvent confined by structures that produce entropic barriers, are often described by overdamped active Brownian particle dynamics, where viscous effects are large and inertia plays no role. However, inertial effects should be considered for confined swimmers moving in media where viscous effects are no longer dominant. Here, we study how inertia affects the rectification and diffusion of self-propelled particles in a two-dimensional, asymmetric channel. We show that most of the particles accumulate at the channel walls as the masses of the particles increase. Furthermore, the average particle velocity has a maximum as a function of the mass, indicating that particles with an optimal mass Mop* can be sorted from a mixture with particles of other masses. In particular, we find that the effective diffusion coefficient exhibits an enhanced diffusion peak as a function of the mass, which is a signature of the accumulation of most of the particles at the channel walls. The dependence of Mop* on the rotational diffusion rate, self-propulsion force, aspect ratio of the channel, and active torque is also determined. The results of this study could stimulate the development of strategies for controlling the diffusion of self-propelled particles in entropic ratchet systems.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献