Inflow turbulence generation for compressible turbulent boundary layers

Author:

Li Rui-XinORCID,Huang Wei-XiORCID,Xu Chun-XiaoORCID

Abstract

It is still challenging to generate high-quality inflow turbulence for the direct numerical and large-eddy simulations of compressible turbulent boundary layers (CTBL). Recently, Wang et al. [“Inflow turbulence generation using an equivalent boundary layer model,” Phys. Fluids 35, 075110 (2023)] proposed a new inflow turbulence generation method based on an equivalent boundary layer model for incompressible turbulent boundary layers. In the present study, the compressible equivalent boundary layer (CEBL) model is proposed and applied to the direct numerical simulation of supersonic turbulent boundary layers. The streamwise equilibrious CEBL approximates the streamwise developing CTBL by adding source terms to the governing equations to recover the mean mass, momentum, and energy balances at a given Reynolds number. Direct numerical simulation is performed to CEBL at free-stream Mach number 5.86 and friction Reynolds number 380. Comparison with the CTBL statistics at the same parameters validates the fidelity and reliability of the CEBL model. Turbulence generated by CEBL as well as the digital filtering and recycling-rescaling methods is used, respectively, to construct the inflow conditions for the direct numerical simulation of supersonic turbulent boundary layers. Results show that the CEBL method has great superiority in reducing the adjustment length compared with the other two methods. In addition, a correction method designed for the high inflow Reynolds number is also introduced.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3