Piston driven shock waves in non-homogeneous planar media

Author:

Krief Menahem1ORCID

Affiliation:

1. Racah Institute of Physics, The Hebrew University , 9190401 Jerusalem, Israel

Abstract

In this work, we analyze in detail the problem of piston driven shock waves in planar media. Similarity solutions to the compressible hydrodynamics equations are developed, for a strong shock wave, generated by a time dependent pressure piston, propagating in a non-homogeneous planar medium consisting of an ideal gas. Power law temporal and spatial dependency is assumed for the piston pressure and initial medium density, respectively. The similarity solutions are written in both Lagrangian and Eulerian coordinates. It is shown that the solutions take various qualitatively different forms according to the value of the pressure and density exponents. We show that there exist different families of solutions, for which the shock propagates at a constant speed, accelerates, or slows down. Similarly, we show that there exist different types of solutions, for which the density near the piston is either finite, vanishes, or diverges. Finally, we perform a comprehensive comparison between the planar shock solutions and Lagrangian hydrodynamic simulations, by setting proper initial and boundary conditions. A very good agreement is reached, which demonstrates the usefulness of the analytic solutions as a code verification test problem.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3