Higher order dynamic mode decomposition of an experimental trailing vortex

Author:

Gutierrez-Castillo P.1ORCID,Garrido-Martin M.1ORCID,Bölle T.2ORCID,García-Ortiz J. H.3ORCID,Aguilar-Cabello J.1ORCID,del Pino C.1ORCID

Affiliation:

1. Universidad de Málaga, Institute for Mechatronics Engineering and Cyber-Physical Systems (IMECH.UMA), Campus de Teatinos, s/n, 29071 Málaga, Spain

2. Institute of Atmospheric Physics, DLR, Münchener Straße 20, 82234 Weßling, Germany

3. Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Av. Universidad de Cádiz, 10, Puerto Real, 11519 Cádiz, Spain

Abstract

The decay of trailing vortices is a fundamental problem in fluid mechanics and constitutes the basis of control applications that intend to alleviate the wake hazard. In order to progress, we use the recently developed modal-decomposition technique to identify the governing dynamics in an experimental trailing vortex. A particular emphasis is on the difficulty and usefulness of applying such tools to noisy experimental data. We conducted a water-tunnel experiment at a chord-based Reynolds number [Formula: see text] using stereoscopic particle image velocimetry measurements over a downstream range of 36 chords. The downstream evolution of the maximum of vorticity suggests that the whole wake can be partitioned into three consecutive regimes. A higher-order dynamic mode decomposition of the streamwise vorticity in each such part of the wake shows that the decay is well approximated by at most three modes. Additionally, our study provides evidence for the existence of several instabilities after the vortex roll up beyond about 6.5 chords.

Funder

Ministerio de Ciencia e Innovación

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3