Full-dimensional quantum mechanical study of three-body recombination for cold 4He–4He–20Ne system

Author:

Zhao Ming-Ming1ORCID,Wang Bin-Bin2ORCID,Wang Gao-Ren13,Fu Bina4ORCID,Shundalau Maksim356,Han Yong-Chang13ORCID

Affiliation:

1. Department of Physics, Dalian University of Technology 1 , Dalian 116024, China

2. School of Physics and Astronomy, China West Normal University 2 , Nanchong 637009, China

3. DUT-BSU Joint Institute, Dalian University of Technology 3 , Dalian 116024, China

4. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 4 , Dalian 116023, China

5. Physics Department, Belarusian State University 5 , Minsk, Belarus

6. Department of Information Engineering and Electrical and Applied Mathematics/DIEM, University of Salerno 6 , Fisciano, SA, Italy

Abstract

The increase of the number of the two-body recombination channels strongly challenges the numerical calculation of the accurate rates for the three-body recombination (TBR) process and its reverse process, collision-induced dissociation (CID), at ultracold temperatures. By taking the 4He–4He–20Ne collision system as an example, we have obtained the rates for its TBR and CID processes involving all four recombination channels, including the two-body states 4He2 (l = 0) and 4He20Ne (l = 0, 1, 2) with l the rotational quantum number. By using the adiabatic hyperspherical method, we have considered not only total angular momentum J = 0 but also J > 0 in the ultracold collision energies (E = 0.01 − 100 mK × kB). It is found that 4He2 (l = 0) is the major product after the TBR process in the ultracold limit (E ≤ 0.1 mK × kB). The TBR rate into 4He2 (l = 0) is nearly one order of magnitude larger than the sum of the other three products, 4He20Ne (l = 0, 1, 2). Moreover, the CID rates for the three 4He20Ne (l = 0, 1, 2) + 4He initial states are close to each other and are smaller than that for the 4He2 (l = 0) + 20Ne initial state. Additionally, we have, for the first time, performed the channel-resolved scattering calculation that can explain the above-mentioned findings quantitatively.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-body recombination in physical chemistry;International Reviews in Physical Chemistry;2022-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3