Comparative studies on the propagation of rotating stall in a liquefied natural gas cryogenic submerged pump-turbine in both pump and turbine mode

Author:

Abstract

With the tightening of liquefied natural gas (LNG) supply, unsteady stall flow under partial flow rate will likely cause significant difficulties with respect to the application of a cryogenic submerged pump-turbine (PT) at LNG-receiving terminals. In this study, the unsteady propagation characteristics of stall cells in pump mode (PM) and turbine mode (TM) of the PT are investigated numerically using the timescale-based hybrid turbulence model. The predicted performance curves show good consistency with on-site experimental data. As the rotating speed and fluid undercooling increase, the triggering of stall flow tends to a lower flow rate in PM, but this is reversed in TM. Under the superimposed action of separation and backflow vortex, stall flow in the impeller suffers from dynamic emergence to dissolution in PM, but quasi-static stall vortex is dominant in TM, benefiting from the rectification of the guide vane. By comparison, running in PM is prone to severe deep stall, and the stall cells have a higher propagation frequency and strength, which also induces greater local energy loss than in TM.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Collaborative Innovation Project of Colleges in Jinan

International Cooperation Project of Science, Education, Industry Integration in Qilu University of Technology

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3