Analysis of charge transport resistance of ZnO-based DSSCs because of the effect of different compression temperatures

Author:

Choudhury M. S. H.1ORCID,Ahmed Himu Sheik Erfan1,Khan Mahatab Uddin1,Hasan Md Zahid1ORCID,Alam Md Shafiul2,Soga Tetsuo3ORCID

Affiliation:

1. International Islamic University 1 , Kumira, 4358 Chittagong, Bangladesh

2. King Fahd University of Petroleum and Minerals 2 , Dhahran 31261, Saudi Arabia

3. Nagoya Institute of Technology 3 , Gokiso-cho, Showa-ku, 466-8555 Nagoya, Japan

Abstract

This article represents a research study about the effect of compression temperature on the performance of Zinc Oxide (ZnO)-based dye-sensitized solar cell (DSSC). To find the optimum compression temperature, the electrodeposited photoanodes are subjected to compression at 60 MP with various compression temperatures ranging from room temperature to 80 °C. The performance analysis involved the analysis of Electrochemical Impedance Spectroscopy (EIS) and photocurrent-voltage (I-V) data under dark and illuminated conditions. The EIS data are examined to gain insights into the electron transport mechanism and validate the cell's performance under optimum compression temperature. The findings of this study demonstrate that cells prepared at 60 MP with a compression temperature of 70 °C show the most favorable photovoltaic performance compared to cells prepared at other compression temperatures. Thickness measurement confirms that increasing the compression temperature ensures a compact layer of photoelectrode. A compression temperature greater than 70 °C causes several defects on the photoelectrode surface, as confirmed by the Scanning Electron Microscopy Image. EIS and I-V data confirm that the cell prepared at 60 MP and 70 °C heating gives comparatively lower series resistance and higher shunt resistance.  Though the series and shunt resistance exhibited different values under dark and illumination conditions, their trends remained consistent. Under this optimized compression temperature the cells achieved a maximum efficiency (η) of 2.78%, accompanied by an open circuit voltage (Voc) of 0.58 V, a photocurrent density (Jsc) of 8.87 mA/cm2, and a fill factor of 0.54.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3