Large magnetocaloric refrigeration performance near room temperature in monolayer transition metal dihalides

Author:

Xie Weifeng12ORCID,Xu Xiong1ORCID,Li Fangbiao1,Zhai Guangwei1,Yue Yunliang3ORCID,Li Min1,Wang Hui1ORCID

Affiliation:

1. School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, State Key Laboratory of Powder Metallurgy, Central South University 1 , Changsha 410083, China

2. School of Microelectronics and Physics, Hunan University of Technology and Business 2 , Changsha 410205, China

3. College of Information Engineering, Yangzhou University 3 , Yangzhou 225127, China

Abstract

Magnetocaloric effect (MCE) exhibits highly efficient and ecological cooling abilities for solid-state refrigeration in contrast to traditional vapor-compression refrigeration. Successive emerging two-dimensional (2D) magnetic materials provide a fertile platform for exploring low-dimensional MCE systems. Here, we focus on a series of 2D transition metal dihalides MX2 (M = Fe, Ru, Os; X = Cl, Br) to explore the maximum isothermal magnetic entropy change (−ΔSmagmax) and adiabatic temperature change (ΔTadmax) under external magnetic field. It is found that FeCl2, FeBr2, and RuCl2 have intrinsically sizable −ΔSmagmax, ΔTadmax, and high thermal conductivity near room temperature, demonstrating superior comprehensive refrigeration performance in comparison with other 2D magnets. It is revealed that strong nearest-neighbor ferromagnetic exchange interaction plays a decisive role in −ΔSmagmax, and the high lattice thermal conductivities of FeCl2 and RuCl2 are attributed to the longer phonon lifetime and larger group velocity of low-frequency acoustic branch. Moreover, moderate strain and carriers doping are able to effectively regulate Curie temperature and magnetocrystalline anisotropy energy and correspondingly enhance −ΔSmagmax. The present work provides important insights for the exploration of 2D magnets for magnetocaloric refrigeration near room temperature.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3